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THE WEAK ASYMPTOTIC SOLUTION OF THE PHASE FIELD SYSTEM
IN THE CASE OF CONFLUENCE OF FREE BOUNDARIES
IN THE STEFAN-GIBBS-THOMSON PROBLEM

Using the weak asymptotics method, we analyze the confluence of free boundaries in the Stefan-Gibbs-
Thomson problem. We construct the global in time solution of the phase field system in this case.

1. Introduction.

In this paper, we analyze interaction of free boundaries in the Stefan-Gibbs—Thomson
problem that is invariant under the change x — —z. We consider a one-dimensional binary
medium that conventionally has "+" and "—" phases. We assume that this medium occupies
the domain (interval) @ € RL, Q = [~[,1], | = const. Let the two interfaces '\, = {x; = =
—¢(t)} and T'yy = {x; © = ¢(t)} exist. So, the interval € is divided into the three sections
QF, = [, —@(@)], o = (—o(t), (1), U = [¢(t), 1], where $(t) is some desired function.
We denote Qf = Qf,|J 3, and, consequently, the domain €] corresponds to the phase "+",
and the domain ; corresponds to the phase "—" at the moment of time ¢. We base our
consideration of this problem on the phase field model. In our case, the phase field system
has the form [10]

ou
L= ——, 1
4] )
La=10 (2)
where 5 P
U—u
Lo = ‘é‘t-— W Lu=¢eLu— e — 0. (3)
Here z € R, ¢ € [0,1,] (t; > t*, where ¢* is the moment of confluence of the free boundaries
T4 @ = 1,2), the function @ is the temperature, u is the order function (the value u = —1
corresponds to the phase "—", and the value u = 1 corresponds to the phase "4"), s is some

constant, and £ < 1 is a small parameter.

We assume that equations (1), (2) are completed with compatible initial and boundary
conditions.

It is well known [3], [11] that the weak limit %, 6 of the solution of system (1), (2) (the
values @ = +1 correspond to the domains Q; and ;) is described as the solution of the
heat equation
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7| =-ap. (7)
o=t
Here " is the temperature in the domain @, § is the temperature in the domain ;
(ie, 0 =0 forz € O and @ = 8 for z € Qf), a is some constant, and gy, ,, =
9(F¢ +0) — g(F¢ — 0) is the jump of the function g on the interfaces I'; 5. :
The asymptotics 4., . of the solution of the phase field system (1), (2) is also expressed
in terms of the solution of the Stefan—Gibbs-Thomson problem (4)—(7).
We assume that the initial data for problem (4)-(7) are chosen so that the left boundary
[';+ moves to the right (—¢; > 0) and the right boundary I's; moves to the left (¢, < 0).
We also assume that initial and boundary conditions provide the existence of the functlon
o) € C',and 0 (2,t) € C>' for 0 < t < #* (t = t* is the moment of confluence, ¢(¢*) = 0).
In addmon, we assume that the finite limit

t_]}ltl*llo @(t) = const (8)
exists.
In the case considered, for ¢ < t*, the asymptotics of system (1), (2) has the form
i o _ Bl on T
02° =0 (z,t) + (6% (2,t) — 0 (z,1)) wr (Lg"oﬂ) wy (M) ; (9)
s S _ :
—l—l—b.(]( :r:%a()_{;,)_F (10)
r— @t gee -z —@(t) z—
oo (EE0 1 ) 1 [y 200, 2md0)]
€ 2 € £
Here wi(z) — 0,1 as z — oo, wf(z) € S(R!) for ¥ > 0, 3(t) is a smooth function.

The function wy(z) = tanh(z) is the SOluthI] of the model equation, and w(t, z1,2) €
C>([0,#*],S(R2)). If an initial data for (1), (2) has form (9), (10) at ¢ = 0, then, for ¢ < ¢*,
the estimate

|u — u2®; C(0,T; L*(RY)|| + ||6 — 6%; L2(Q)|| < e, p = 3/2

holds (see [1], [2], [4]). Here @ = R' x [0,¢*), and the constant ¢ is independent of .
The main goal of this paper is to construct the formal asymptotic solution of system
(1), (2) describing interaction of free boundaries, i.e. we want to construct some approxi-
matmg (asymptotic) formula of the solution and this formula must work for t € [0,%,],
t; > t*. According to the general existence theorems, the solution of problem (1), (2) exists
in the situation considered. However, any construction of asymptotics for such solution by
the traditional methods is very difficult, because, to find the main term of the order function
asymptotics in the case of interaction of free boundaries in the frame work of classical
asymptotic methods, we need to solve a partial differential equation explicitly. We use another
approach that is called the weak asymptotics method [6],[7]-[10].
We note that, as far as we know, the single example of an accurate qualitative analysis
of the problem with confluence of free boundaries for the Hele-Shaw problem was done by
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A. Meirmanov and B. Zaltzman [12]. Also, using the weak asymptotics method, G. Omel’ya-
nov |7] has analyzed interaction of free boundaries. In comparison with him, we have changed
the structure of anzatz for the weak asymptotic solution and this allowed us to consider the
problems in more detail.

It should be noted that the price payed for the possibility to construct more or less
explicit formulas for the solution is not so small — we do not justify the asymptotics construc-
ted and this justification can not be derived from known estimates.

The main result of our paper is problem (41). The solution of this system allows us to
describe the temperature in the domain Q uniformly in time. Moreover, formulas that are
based on system (41) allow us to explain the behaviour of the temperature at the moment of
confluence of the free boundaries (see the data of the numerical simulation in Section and
Section ).

2. Construction of the weak asymptotic solution.

In particular, we need the following definition. A family of functions f(¢,x,c) admits
the estimate Op(¢”) if, for any test function ((z), the relation

(f,Q) = 0(e")

holds, and this estimate is uniform in ¢ € [0,,].
According to the weak asymptotics method, we need to regularize problem (4)—(7). An
appropriate regularization is the field phase system (1), (2) (see [1], [2], [4], [11])

DEFINITION 1. A pair of smooth functions (u.,0:) is a weak asymptotic solution of system
(1), (2) if, for any test function ((z), the following relations are satisfied:

/ (ﬁgt £ égt) Cdz + f@equdx = 0(e) (11)

E/’&Ethx—l-%fﬂgcde- (12)

1l s e ) 5o bl
hg/ (I_? :1') (xd$+%/11-5-3~;(95g)d:r—O(b)‘

Here and later all integrals are taken over R'. Equation (12) is obtained by multiplying (
by 1., and integrating by parts. The reminders O(¢) in the right-hand sides of (11) and (1
must locally be bounded in ¢, i.e. for any t; € [0,00), we have

2)
2)

<ie. O = const.
max [0()| < Cue, G, = const

This construction was introduced and analyzed in paper [2].
In the case of the single interface I';, a solution of the Stefan—Gibbs—Thomson problem
has the form (see [1], [2],[3])

U = wp (Sg) = sign(S) + Op:(£?),
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0= 3 (65 +67) + 3 (65 +6) n (af) "
1

5 (05 +07) + % (67 + 6, sign(S) + Op(2),
where the free boundary T'; is defined by the function S =t + ®(z) (ie., [y = {z: t =
—®(2)}), 8 =1/|V®|, and 67 are smooth continuations of the functions 6= into the domain
Q. Recall, that the functions #* are the temperature of the medium in the domains with
phases "+" and "—" correspondingly.

We note that all our considerations are formal. We do not justify that the functions
constructed are close to the exact solution of system (1), (2) for all the moments of time
considered. But, as is noted above, the asimptotics was justified for ¢ < t*.
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Figure 1. a) Confluence of free boundaries. The moments of time are denoted by: 1) t=1.17, 2)
t=1.27, 3) t=1.29, 4) t > t* ~ 1.31; b) The effect of appearance of a cooled region.
The moments of time are denoted by: 1) t=1.17, 2) t=1.21, 3) t=1.27, 4) t=1.30, 5) t=1.31.

The main results of our paper is problem (41) for the weak asymptotic solution of the
phase field system specified for ¢ > 0. This system allows us to qualitatively describe the
temperature behavior at the moment of confluence of the free boundaries. Namely, from Fig.1
b) we can see that in the Stefan-Gibbs-Thomson problem the temperature has a "jump"with
finite amplitude near the moment of confluence: the profile of graphs abruptly changes from
W-profile to V-profile.

The evolution of the order function are shown in Fig.1 a). Clearly, in the case of
the problem with two free boundaries, prior to the moment of interaction ¢ = ¢*, the
three domains (intervals) exist with different phases. At the moment of contact of the
free boundaries the domain (interval) €; disappears, and for ¢ > t* only the single phase
"+"exists. It is also clearly seen that problem (1), (2) is essentially nonlinear, and the simple

sum of the two waves wy (_x%”m) and wy (x%m) is not a solution of problem (1), (2).
From formula (10) we see that each of these waves has the kink-type structure (see Fig.1

a)). If the free boundaries T';;, i = 1,2 lie on a sufficient large distance one from another for
t < t* 1.

=Eh 54 L sl
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then in (1), (2) the order function has form (10). At the same time, if ¢ = " and ¢; # 0 then
formulas (9), (10) do not give a true solution even in the qualitative sense.

Taking the facts mentioned above into account, we can construct the solution of the
phase field system (1), (2) in the form

a. ;[14_%(5—3:—4)_‘_“}0(53:—%0)__ (13)
()

&
0. = (J:r)+Tw1(_‘r—*”) wal( ”°)+ (14)
X

N
£

Yz, t) = @ult), T (x,8) =7 (=2

)

where

T (z,t) = % (@, 8) (@ + (), T (z,t) =% (z,8)(z — ¢(1)).

Here 3, ¢, v~, 7", 7, are desired functions, and ¢ = ¢(t,¢) is the function described the
interfaces I'; 4, i = 1, 2. To describe a structure of the functions introduced above we consider
the "fast"variable 7. Namely, we assume

where for ¢t < t* the function ¢y = ¢ is found from problem (4)-(7). According to our
assumptions, the function ¢(t) can be smoothly continued for ¢ > t* with preserving the
sign of the derivative. This continued function we shall also denote by ;. So, the variable
7 = 7(t,€) is specified for ¢t > t*, and T — oo for ¢t < t* as ¢ — 0 (prior to interaction of
the free boundaries); 7 — —oo for ¢ > t* as ¢ — 0 (after confluence of the free boundaries).
Hereinafter we assume 3 = 8y + 51(1) > 0, ¢ = @o + wo1(7). The functions wo(z), wi(z)
are defined in (9), (10). We assume (and we prove later) that the limits 5 (7) — 0 and
©1(7) = 0 hold as 7 — oo (i.e., prior to confluence of the free boundaries).

From formula (13) we can see that, as a result of interaction of free boundaries, the kinks
wo (B(=x — ) /) and wy (3(x — ¢)/c) annihilate. This annihilation means the disappearance
of the domain €2; . Indeed, if ¢(¢) > 0 then from formula (13) we obtain

.=1—0(1), z2<—-p,z>¢

and
=-14+0(l), —-p<z<ep.

If o(t*) = z* (in our case z* = 0) then
e = [1+wi (Bz/e)] /2,
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if ¢ < 0 then
. = 1 — o(e™)

for any N > 0, 2 € R'. Formula (14) is constructed so that it qualitatively true describes
the phases during the evolution of the free boundaries | S

According to Definition 1, to construct a weak asymptotic solution of the phase field
system (1), (2) in form (13), (14), we must satisfy relations (11), (12). Here we present only
the results of the calculations, and, in Section , we demonstrate the techniques of the weak
asymptotics method for (15)—(27) in detail. So, we have

" Ot k
Lo, + a—i‘: =Wo[H(p — z) — H(—z - )] +
WiH(—z — @) + W[l — H(p — z)]+ (15)
Wid(z + ) + Wie(p — )+
Wi (z + @) + W' (p — z) + Opi(e),
ou. 1z 15

V' (@ + @) + V3 (o — z) + Opi (2),

where the operators L and £ are defined by formula (3). In equations (15), (16), the function
H(z) is the Heaviside function, and the function 6(z) is the Dirac J-function.
In the right-hand side of (15), the coefficients of the Heaviside functions have the form

- g -
Wo =By, (a " a—&g') (pe+T7), —p<zT<Q, (17)
. o 0 &
Mfl — E_@ ((ﬂg‘i"}} ), < _{1‘97 (18)
: g . +
W, = (a 43 W) (tpt - T,') 5 E% @ (19)
In (15), the coefficients of the §-functions are defined by the formulas
- 4 B:00t 1y
Wi =T, ~ 7 (~0.0By - 22— By) + =22 B, (20)
T —f [?‘:'j -‘8799 z
W"Ql i E Tr-;‘x=¢ -7 (@, 1)Bj; — ?t(g — Byo) + TMB()U' (21)

Here we denote
By = /cbg(z)wo(—n =2)de, By = /L'ul(z)wl(n — 2)dz,

Bio= [ sin(@en(-n~ 2z, n=208, p=

m |G

In equation (15), the coefficients of the derivatives of the -functions are given by the formulas

Wi=T},__, =0, (22)
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Wi=TH,, =

In equation (16), the coefficients of the é-functions have the form

: -‘?T‘:l-’ﬂt = - TLFIJI‘ A 2 w
Wi 2432 —7z 2By + Boogo) + 232 72 (C8o — 2C550+Clooo) + —5—(2 — Byo)+

%(201“ — 2Bz + Bgeg2) + %(Cﬁﬁ — 2C0 + Cagoo)s

e i : 3
_Ptgpe o g oyl CE  opE 108 Y~ (2~ Byo)-

232 232 Bog
%(QGF 23020 =+ BOZUZ) = Ig(cm‘} = 20{1:’)0 3 C:')Ooo)‘

—
4

S —

H

Here we denote

B = / Wi (2)wo(=n = 2)dz,  Byegz = _/L?JS(Z)wg(—n— z)dz,

By = fzwg(z)wn(—n— z)dz, Bgg = ./.zwu(/, Jwi (—n — 2)dz,

Clan = fcbg(z)cbu(—n —2)dz, Cipo = [u}g(z)wg(z)wu(—n — 2)dz,

Chino = f éoo(2)ioo(—1 — 2o~ — 2)dz, Cfy = [ (=)o (1 — 2)d.

Cioo = /zwg(z)wg(z)wo(—?} — 2)dz,

Clooo = /3‘5’0(2)&’0(—7}‘ — 2)wp(2)wo(—n — 2)dz,

wé L&J% i
w:fﬂmm& Flao) =2 -2 4 2.

In (16), the coefficients of the derivatives of the J-functions are given by the formula
V2=pC~D, i=132
where we denote

S uich
C= 3 (2ar — 2By2 + Byzg2 — Co + 2Cs00 — Coooo) »

D= f ( z) +wo(—n — 2) + wo(2)wo(—n — 2)) — 1) dz
THEOREM. If Stefan equations (6), equation

Y (—o,t) — v (=@, t)Bi; — %7 (¢, t) — v~ (0, 1) Biy +

24}1"100 z
5 S BE — (2 — Byy) =0,

(23)

(30)
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Gibbs—Thomson equations (7), and the equation
B2C-D=0 (31)

hold, then the functions ..0. defined in (13), (14) are the weak asymptotic solution of the
phase field system (1), (2).

Proof. In view of Lemma , if

lim W} =0, (32)
T—too
then
Wl + W, =0. (33)

Equation (32) is the Stefan equation (38) as 7 — 4o00. As 7 — —oc, equations (32) hold
automatically. So, we obtain relation (33) that means equation (30).
Analogously, if

r1
R <
then
Vi + V3 =0. (35)

As 7 — +o00, equations (34) imply the Gibbs-Thomson conditions (37). As 7 — —o0,
equations (35) hold automatically. So, by Lemma we obtain that equation (33) is true.
Taking (24) and (25) into account, we see that equation (33) is true automatically.
Also, we need to assume that V> = 0, i = 1,2, and, therefore, we obtain relation (31).
We note that, in view of (22), we leave out of account the coefficients W72, i = 1,2. [J
So, if the assumptions of the Theorem hold, then system (17)—(19), (30) is the regulari-
zation of generalization of the Stefan-Gibbs-Thomson problem (4)—(7) for ¢ € [0,¢;], where
t1 >,

3. Dynamics of the free boundaries prior to interaction.

In this section we analyze the weak asymptotic solution (13), (14) of the phase field
system (1), (2) for the moments of time those precede the moment of interaction of the
free boundaries I'; 4, i = 1,2. Taking our assumptions into account, we obtain that prior to
interaction ¢; — 0, and, consequently, 7 — oc. p/T7 — 1l as e — 0, t < t*.

Now we consider the formula (27) in the limit as 7 — oc. Clearly, in (28), the terms Cy;,
Cogs and Cygep become zero as 7 — oo. It is well known that iy = —wy + wi. Consequently,
multiplying by @y and integrating over R! the last equation, we obtain the following formula
for ap:

2ap = Ay = /cbg(z)dz.

Obviously, By — 2ar and By — 2ap as p — oo. Thus, we see that C sarasp— o0 A
straightforward analysis of the coefficient D defined in (29) shows that D — af as p — oc.

So, taking into account our assumptions on the function 3, the above analysis and the
assumption that coefficients (27) are equal to zero, we obtain the equation

Bi-1=0
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as 7 — oo (i.e., prior to the confluence of the free boundaries). Since, we assume that the
function 3 is positive, the last equation has the single root

By=1, (36)

Directly from our constructions we obtain that the temperature is continuous and is
equal to ¢, at the points of the interfaces * = +¢. Hence, in the limiting Stefan—-Gibbs-
Thomson problem condition (5) holds.

Now we consider the equation (35) in the prove of the Theorem . As is noted above, this
equation is ever true, and we do not include equation (33) in the assumptions of the Theorem .
However, this equation is formally contained in system (17)—(19), (30). Nevertheless, for the
validity of problem (17)—(19), (30) prior to interaction (while the free boundaries lie on the
sufficient large distance one from another), we equate to zero the coefficients (24), (25) as
7 — o0. In other words, we verify that equation (34) is true. So, we obtain the equations

x ’Y(SC. t)‘x:q:;pu = _"‘4l32":90t: (3?)

where ~(z,t) is the temperature (see (14)). Thus, the Gibbs—Thomson equation (7) holds,
where a = Ay, /5.

Now we consider equation (30) prior to interaction, or, as is the same, we verify that
limits (32) are true as 7 — oc. Thus, we obtain the two equalities those correspond to the
free boundaries © = Fpy(t):

(Af'_ = ’:f_h) ‘132—990 = —2pq, (nf-.-—-l_ = ’}"‘) l;r::po = —2po. (38)
It is clearly seen that equations (38) are identical with the Stefan equations (6) correspon-
dingly for the interfaces I';;, i = 1,2.

It is easily seen that, as 7 — oo, the heat equations (17)—(19) pass to the heat equation
(4) correspondingly for the domains €7, 7, and Q5.

So, problem (17)-(19), (30) passes to the Stefan-Gibbs-Thomson problem (4)—(7) prior
to confluence.

4. Confluence of the free boundaries.

In this section, we analyze the solution of the phase field system in the case of the Stefan-
Gibbs-Thomson problem after confluence of the free boundaries. So, we have g (t) —@10(t) <
0 and, consequently, 7 — —o0 as € — 0.

Taking the fact that the coefficients in (27) are zero and equation (36) into account, we
have the formula for 3, (7):

g -1
(1% B) = (39)
In view of the relation (26) for F, from formula (27), we have F(z) > 0 for z € R',
and, consequently, D > 0. Analogously, in (27) the function C is the leading term of the
asymptotics of the expression (du/0z)?, and, consequently, C is also positive. Using the
explicit formula

er — g%
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the explicit form of the function F(z) (26), and expressions for C, D (28), (29), we can verify
that :
lim C/e*" = const # 0,

n—+—00

lim D/e*" = const # 0.

= —00

So, the right-hand side of relation (39) is real and positive. This fact means that the single
positive root of equation (39) exists. This root is the real bounded function 3; = 3 (p). Thus,
By — 0as p— oo and 3; — const # 0 as p — —oo.

As is noted in Section 3, equation (5) is true obviously.

The difficulty of the problem with interaction considered here is to find the way of the
smooth continuation of the temperature into the domain ¢ > t* preserving the sign of the
derivatives, or, more precisely, we need to smoothly define the temperature in a neighborhood
of the point (#*,z*). Indicating the way of this continuation, we prove that system (17)-
(19), (30) is true for ¢ > ¢*. In other words, we verify that the asymptotics (13), (14) of the
solution of the phase field system (1), (2) is global in time.

We denote v, (t) = 7 (¢,t) = v (—,t), and smoothly continue the function 4~ =
71 () preserving the sign of the derivative for [t*,#;]. We assume

=4 (2 +9)(p —2)/¢. (40)
We define the function T as the solution of the problem
o1,

LTE:F(xt)_ 8?"

- - T+ p—
Tilyg = 0. —{(wﬂ)w]( *’)wl(ﬂ )} | (41)
t=0 T 5 0
Telo—si = 0 PR
where
F(x,t)=-L [ﬂwl (mjf(p) Wi (w:ﬁ“)} .
Using the weak asymptotic formulas, we obtain
5 die _ 1[e(r (@ -2 +4 @) —@h (P —2%) &
(H(e—2) = H(-z— ¢)) + [176(z — @) + ¥ 6(z + ¢)] Bj;+ (42)
O = = 2_;81_(’0 £
?(2 — Byo)[0(z — ) + d(z + ¢)] — 3—2m350 + Opi(e),
+
and
& T _|_ 1ol 0— T
s {(%‘f'n)wl( C\P) Wi ((’Vr )} = (43)
& ] =0

{e:Bi)(H(p — ) — H(—x - ©)}Hizo + Opr(€).

Now we can see that if we know the function ¢ globally it time, then the functions
F(x,t) and 04, /0t in the right-hand side of the heat equation in (41) are globally defined as
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well. Hence, problem (41) allows us to define the function 7. for ¢ > t*. We can verify that
different continuations of 4 for t > ¢* lead to changing of the order O(e) for the function
F(x,t). This fact follows from Lemma 3.

Obviously, the equality

égz'TE+fle (m—i—[p)w] ({;;‘E) ('-1'-1)
holds (see (41)).
Since in the problem considered the domain €2 = [—¢,¢ @] exists only for t < t* (as
o < 0 for t > t* then Ilw; (“”’—Jr'ﬁ)wl ({‘—T) =0le )fort>t) then 6. = T, +O(e) for t > t*.

Clearly, in view of (41) we have T. € C* for ¢t > t*. Taking (14) into account, we obtain the
expression for 7.:

T. =BT~ [H(¢ — 2) - H(-z — )|+ (45)
ﬂ—i_H(—iﬁ = {1‘9) &5 TT+H(\0 G ’I:) + @4 F 0(5):

where 7~ = I1— T, T~ € C'([-1,1]) uniformly in ¢. Denoting the leading term of the weak
asimptotics of T, by T}, we have

Ty ™= {Bilf_[H(w—x) —H(_—:B—cp)]} + @t = 1. (46)

==

So, problem (41) allows us to define the "global" solution that, first, describe the
temperature in the domain Q for ¢t < t* (see formula (44)) and, second, is independent
of topology of the domain. The last fact means that the "global" solution of problem (41) is
defined for t > t*, i.e., after confluence of free boundaries.

The facts mentioned above are true under the assumption that the function ¢ is specified
for t > t*. It seems that equation (30) allows us to specify the function ¢ for ¢t > t*.
However, this equation contains the unknown functions ;" (F¢, t) those mean the left (right)
derivatives of the temperature at the points z = F¢. We note that, in view of (45), the
functions '}/;_FT can be find from (41) as the jumps of the derivatives of the function (77), at
the points z = Fo. It is easy to verify that the equations

Wt e 203 oot % e

"r’z+ = Ef(z =Bty B, — TBGU'- (47)
+ Pt B ATl 2.‘37{190! z 4

Y = _?(2 — By) — 5 Bir + TBGG (48)

hold. It is easy seen that these equations exactly imply that the coefficients of d(z + ¢)
are zero. But equation (30) is obtained by equality of the sum of these coefficients to zero;
therefore equations (47), (48) imply (30). We must note that in view of symmetry our
problem the equations (4() and (48) are identical. We also note that, in view of (47), (48),
Y-(Fp) — 0 for t > t*. This fact means smoothness of the function 7, for ¢ > ¢* again.

Equation (47) (or (48)) contains the two unknown functions v, ‘ e (or vf|,-,) and
¢, therefore the construction of the single formula for the weak asymptotic Solutlon does not
lead to success. We assume, as usual,

= o + pop1(7, 1), v ‘x——w =% + 75 (7, 1), (49)
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where ¢; — 0, ;{ — 0 as 7 — +oo (prior to interaction) are smooth uniformly bounded

functions, and its derivatives decreases in 7 faster than |7|™!.

As 7 — —o0, taking (47) into account, we obtain that the functions Y65 @0, 7~ form
the Stefan equation (38). Let now the function ¢; is an arbitrary function and it satisfies
to the conditions formulated above and this function is so that |1 + ¢;| > C > 0 for all
T € (=00, +00), t € [0,%;]. Then from (47) we obtain the relation

o ‘x:_@ = (50)

: B A 281"19 Z
eot (1 = (T01)-) ( == %) — 290+ (Bjy — 4™ — 32 UtBilr

and we can define the function 7:.1‘:3:@ analogously. In particular, the assumption about
growth in 7 of the derivatives is followed from (50).

=l

T+

wY

Figure 2. Structure of the temperature.

The numerical simulation shows (see Fig.1 b) that the temperature is the smooth
function at the moment of confluence. The theoretical explanation of this fact is the problem
(41). Indeed, the function that satisfies to a heat equation must has the smooth coordinate
derivatives.

Moreover, from (47) and (48) we can see that after interaction of free boundaries (7 —
—o0) the functions 7}, — 0. It is easily seen that in (40) the function II change the sign

at the moment of confluence, and IT < 0, ¢ > ¢*. From the numerical results in Fig.1 b) we
see that. at the moment of confluence ¢ = ¢*, the temperature change the profile. This effect
appears as the temperature drop, see Fig.1 b). An explanation of this temperature profile
changing, as was mentioned above, follows from (40) and (44). For clarity, we present the
Fig.2, where the temperature is shown schematically.

5. The techniques of the weak asymptotics method.

In this section, using as example the phase field system (1), (2), we demonstrate the
techniques of the weak asymptotic method.

The following lemma is the main technical result that we use in our calculations.

Let I'y = {x — ¢(t) = 0}, x € R, where @(t) is some smooth function, let w(z) € S (S is
the Schwartz space), and let 5 = 3(t) > 0.

LEMMA 1. For any test function ((z), the relation

¢ (f“—;@) 0@)) = 34,5(0) + O (51)

=
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holds. Here A, = [ w(2)dz.

Proof. The relation in the right-hand side of Eq. (51) can be rewritten in the form

1/“” (ﬁ%ﬁ)) ¢(z)dz = ((p) fgf(z)dz- + Oe).

To obtain this relation, we must make the change of variable z = 3(z — ¢)/e, and apply
the Taylor formula to the integrand at the point z = ¢. According to the definition the last
integral is the action of the function A,d(z — ¢) to the test function ¢. OJ

If we want to consider linear combinations of generalized functions with accuracy Op/(¢?),
then we need to modify the notion of linear independence. This modification plays the key
role in the considerations related to problems with interaction of solitons.

Indeed, let ¢; # @, be functions independent of z. We consider the relation

G10(z — 1) + g20(z — @2) = Opi(c), a >0, (52)

where the functions ¢; are independent of ¢. Clearly, we obtain the relations

Taking our assumptions into account, we have
g; = 0, = 1, 2.

Everything is different if we assume that the coefficients g; can depend on . Here we consider
only a special case of such dependence. Namely, let

gi = A + S’e(Aé/gja i=1,2, (53)

where A; are independent of ¢ and, as |o| — oc, the S;(0) decrease sufficiently fast.

LEMMA 2. Let the estimate
|oSi(o)| € const, i=1,2

hold. Then the relations
A1 =0, A4,=0, 5+5=0 (54)

are follow from relation (52) for a = 1.

Proof. Using in (52) the Teylor formula and taking (53) into account, we have
[S1¢(1)) + S2¢(02))] = S16(61)) + S2€($1)) + S2(d2 — 61)C'(d1 + pda), 0 < p < 1.

We see that
SQ(A(b/E)(Gj? T "*fjl) = {_052(0)}|a=&¢,’£ = 0(6),

since the function 0S,(0) is uniformly bounded in o € R;.
So, we can rewrite relation (52) in the form

Ai((¢1) + A2(@2) + (S1 + S2)C(n) = Ofe).
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Thus, since the coefficients A; are independent of ¢, we obtain the statement of the lemma.
O

COROLLARY 1. Let, in relation (52),

A I 6 ;.'. h .
gi(z) ™ gg':g?:( G))_._ g[Z) ZO(|£|_I\], N >0, 1= 1,2
€ 0z |2]—00
Then we have the equality
91+9,=0.
Proof. We write the functions ¢; in the form
gi(2) = gi +w(2)(g" —g7) +9i(2) — g7 —w(2)(gF — 7)), (55)

where w € C*, w(—o00) = 0, w(oc) = 1 and w® € S for a > 0, g& = lim,_, . g;. We note
that the expressions in the parenthesis in (55) behave in the same way as the functions S;
in (54). Relations (52) are equivalent to the following limits:

lim g;i(z) =0, =12, (56)

Z—x00

Therefore, if (56) hold, then we obtain the situation of the Lemma 2 for 4; = 0. O

LEMMA 3. Let f(t) € C', f(to) = 0, and let f'(t) # 0. Let g(t, ) the locally uniformly
satisfy the estimates

[Tg(¢,7)| < const, |rg'(t,7)| < const, —oo0 < T < o0,
and let g(to, 7) = 0. Then the inequality

lg (t, f(t)/e)] < €C;

holds on any interval 0 < t < t that does not contain zeros of the function f(t) except to,
where C; = const.

Proof. The fraction f(t)/(t — ty) is locally bounded in ¢. The fraction Tg(¢,7)/(t — to) is
also locally bounded. We have

g(tfW)/e) ) t—to
(t —to) &
By the assumptions of the lemma, on the interval under study, the last multiplier on the

right-hand side is bounded, while the product of the intermediate multiplier and the first
multiplier (without ¢) is bounded in view of the properties of the function g(¢, 7). O

9@, f(t)fe) =e-

COROLLARY 2. Suppose that the estimates in the assumptions of Lemma 3 hold for 0 < 7 <
o (=00 < 7 < 0). Then the statement of Lemma 3 holds on any interval [ty, t] that does not
contain zeros of the function f(t), and signt = signf(t), t € [to. 1].
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According to Definition 1, we must substitute asimptotics (13), (14) into system (15),
(16). As a result, equation (15) contains the terms of the several types. We consider the
terms contained the function wo(3( ©)/e):

ff(i’:t)wo (.ﬁ_r__ Y) C(z)dr =

Jo (29) (& frwasom)a-

b (.ﬁ“’" - ““) f(y,t)qy)dy‘ "

& —00

2 [ (5722 ([ swrcwpay) as =

f M f e f_ ;o f(2, 8¢ (2 de £ 06,

where f(z,t) is some smooth function, and ((z) is the test function. (We recall that the
integrals are taken over R!). The last integral is obtained as the result of, first, using of
change of variable z = 3(—x — ¢)/e, and, second, using of the Teylor formula at the point
x = —p. We note that, according to Lemma 1, our transformations are true. As a result, we
have

(@ e (.B 52 o *’) = f=,t)(1 + 2H (-7 — 9)) + Op(e), (57)

where H(z) is the Heaviside function. Using the same method, in (13), we obtain the
expressions for the terms contained the function wo(3(x — ¢)/¢)

() (.s""" z "9) = f{p,8)(1 - 2H(g — 2)) + Ops(c). (58)

As we noted above, the principle moment of the weak asymptotics method is the transfor-
mation of nonlinearity (product of the two functions wo(8(—z—¢)/c) and wo(B(x—p)/<), see
formula (13)) to the linear combination of the Heaviside functions (see Lemma 2). Namely,

we have
/ f(a, t)wo( )ulo (3(” - "’) Slliges
# (ﬁ_y)wﬂ( %) [ soceman_+
2 [ (s ) o (5722 (/w0 )dy) o
_/ (ﬁx n)“”“ (5_ ) (f_wf(y,t)cw)dy) de =

ff (z,t)C(z)dx +f (2)wo(—2z — n)dz ﬂrs'f(.:I:., t)((z)dz—

fwn(z)wo(—z —n)dz /jp f(z,t)¢(z)dz + O(e).
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Analogously, as we calculate for formulas (57) and (58), in the two last integrals we corres-
pondingly change the variables z = J(Fx — ¢)/e, and we use the Taylor formula at the
points x = Fp. Thus, we have

F(z, t)wo (d"’—_t) Wo (,e‘” - “") = (59)

1+ By [f(—@, ) H(—z — @) = f(p,t)H(p — z)] + Op: (¢),

where Byy(n) = [ wo(2)wo(—2 — n)dz, n = 28p, p = p/e.

Using the technique demonstrated above, it is easy to verify that the calculation of
Ly + 9y /0t = Opi(e) (see (1)) leads to the linear combination of general functions (15).
Analogously, we obtain the linear combination (16).

We note that the indicated calculations (in particular, the calculations of the derivatives
Dty /0t and 96, /t) lead to existence of the terms those contain products of the Heaviside
functions and the integrals (Bjj);? J =0,1. The expressions of this type we transform as in
following

(By), flH(—z — ¢) - H(p— 2)] =
EB}j(n)(.ﬁp),-f[H(ﬁ —p)-H(p—1z)] =
2pB;;(n)(Bp)r fA(x + @) + (1 = A)d(z — ¢)] + Opi(e),

where f is some function, and 0 < A < 1. Taking the symmetry of the problem considered
into account, we assume A\ = 1/2.
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